217 research outputs found

    Large-Scale Neural Systems for Vision and Cognition

    Full text link
    — Consideration of how people respond to the question What is this? has suggested new problem frontiers for pattern recognition and information fusion, as well as neural systems that embody the cognitive transformation of declarative information into relational knowledge. In contrast to traditional classification methods, which aim to find the single correct label for each exemplar (This is a car), the new approach discovers rules that embody coherent relationships among labels which would otherwise appear contradictory to a learning system (This is a car, that is a vehicle, over there is a sedan). This talk will describe how an individual who experiences exemplars in real time, with each exemplar trained on at most one category label, can autonomously discover a hierarchy of cognitive rules, thereby converting local information into global knowledge. Computational examples are based on the observation that sensors working at different times, locations, and spatial scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels, which are reconciled by implicit underlying relationships that the network’s learning process discovers. The ARTMAP information fusion system can, moreover, integrate multiple separate knowledge hierarchies, by fusing independent domains into a unified structure. In the process, the system discovers cross-domain rules, inferring multilevel relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, the ARTMAP information fusion network features distributed code representations which exploit the model’s intrinsic capacity for one-to-many learning (This is a car and a vehicle and a sedan) as well as many-to-one learning (Each of those vehicles is a car). Fusion system software, testbed datasets, and articles are available from http://cns.bu.edu/techlab.Defense Advanced Research Projects Research Agency (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC subcontract 801881-BS under prime contract HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (SBE-0354378

    Spatial Pattern Learning, Catastophic Forgetting and Optimal Rules of Synaptic Transmission

    Full text link
    It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309

    Distributed ART Networks for Learning, Recognition, and Prediction

    Full text link
    Adaptive resonance theory (ART) models have been used for learning and prediction in a wide variety of applications. Winner-take-all coding allows these networks to maintain stable memories, but this type of code representation can cause problems such as category proliferation with fast learning and a noisy training set. A new class of ART models with an arbitrarily distributed code representation is outlined here. With winner-take-all coding, the unsupervised distributed ART model (dART) reduces to fuzzy ART and the supervised distributed ARTMAP model (dARTMAP) reduces to fuzzy ARTMAP. dART automatically apportions learned changes according to the degree of activation of each node, which permits fast as well as slow learning with compressed or distributed codes. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Dynamic weights that project to coding nodes obey a distributed instar leaning law and those that originate from coding nodes obey a distributed outstar learning law. Inputs activate distributed codes through phasic and tonic signal components with dual computational properties, and a parallel distributed match-reset-search process helps stabilize memory.National Science Foundation (IRI 94-0 1659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    Fuzzy ART

    Full text link
    Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs. Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100

    Distributed Activation, Search, and Learning by ART and ARTMAP Neural Networks

    Full text link
    Adaptive resonance theory (ART) models have been used for learning and prediction in a wide variety of applications. Winner-take-all coding allows these networks to maintain stable memories, but this type of code representation can cause problems such as category proliferation with fast learning and a noisy training set. A new class of ART models with an arbitrarily distributed code representation is outlined here. With winner-take-all coding, the unsupervised distributed ART model (dART) reduces to fuzzy ART and the supervised distributed ARTMAP model (dARTMAP) reduces to fuzzy ARTMAP. dART automatically apportions learned changes according to the degree of activation of each node, which permits fast as well as slow learning with compressed or distributed codes. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Dynamic weights that project to coding nodes obey a distributed instar leaning law and those that originate from coding nodes obey a distributed outstar learning law. Inputs activate distributed codes through phasic and tonic signal components with dual computational properties, and a parallel distributed match-reset-search process helps stabilize memory.National Science Foundation (IRI 94-0 1659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    A Distributed Outstar Network for Spatial Pattern Learning

    Full text link
    The distributed outstar, a generalization of the outstar neural network for spatial pattern learning, is introduced. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field of arbitrarily many nodes, whose activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse, whereby a path weight decreases in joint proportion to the transmitted path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals. Three synaptic transmission functions, by a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all. When source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the unit of long-term memory in such a system is an adaptive threshold, rather than the multiplicative path weight widely used in neural models.British Petroleum (89-A-1204); Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225

    Unifying Multiple Knowledge Domains Using the ARTMAP Information Fusion System

    Full text link
    Sensors working at different times, locations, and scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels that are reconciled by their implicit underlying relationships. Even when such relationships are unknown to the user, an ARTMAP information fusion system discovers a hierarchical knowledge structure for a labeled dataset. The present paper addresses the problem of integrating two or more independent knowledge hierarchies based on the same low-level classes. The new system fuses independent domains into a unified knowledge structure, discovering cross-domain rules in this process. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, ARTMAP information fusion system features distributed code representations that exploit the neural network’s capacity for one-to-many learning. The fusion system software and testbed datasets are available from http://cns.bu.edu/techlabNational Science Foundation (SBE-0354378); National Geospatial-Intelligence Agency (NMA 201-01-1-2016

    Distributed Hypothesis Testing, Attention Shifts and Transmitter Dynatmics During the Self-Organization of Brain Recognition Codes

    Full text link
    BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088

    Normal and Amnesic Learning, Recognition, and Memory by a Neural Model of Cortico-Hippocampal Interactions

    Full text link
    The processes by which humans and other primates learn to recognize objects have been the subject of many models. Processes such as learning, categorization, attention, memory search, expectation, and novelty detection work together at different stages to realize object recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model class (Adaptive Resonance Theory, ART) and discuss how its structure and function might relate to known neurological learning and memory processes, such as how inferotemporal cortex can recognize both specialized and abstract information, and how medial temporal amnesia may be caused by lesions in the hippocampal formation. The model also suggests how hippocampal and inferotemporal processing may be linked during recognition learning.Air Force Office of Scientific Research (90-0175); British Petroleum (89A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100
    • …
    corecore